30 4B # U•2095-4980 2023 01-0016-06

(1.

C Kg j S " z#U S6) ö ¢ % THz u*a #+° j S À*T

z D u ${}^{1,2}\text{U}\bullet\text{AY}$ ł ó ${}^{1,2^*}\text{U}\bullet\text{Ea}$.' ${}^{1}\text{U}\bullet\text{OR}$ LTÅ ${}^{1}\text{U}\bullet$ % öA ${}^{1,2^*}$

2.

200050 100049

">- K», I VB— ¥¬[z#U*a | ', 0*a U ³ '+° ý • U•% z#U(Û⁻7 ^+°Kò < -=ñ; C Kg j S7Û's+°L, !n Ê Ì X ³I ′%, .ù Ge Si & Á · C Kg j S "U•g>--@/¢ ² ¢# z#U(Û ⁻7+°*a 'S6) U•8ã Ã ² 8 K #U Ò 7 j S "7Û's+° ¤ ·0 *a"m *a ·¥ S 3ë Ê+ö 3ë U• Ã \ ² T 0.1~3 GHzM½ R ±D⁻ f Ÿ '+° Ê+ö t È Užf ²O, @í ¢ % VB— ¥ u*a #+° j S Ë6) U• 2A C Kg j S ": VB— ¥Fû |K] Î"w "Kò < -=ñ U•¢ Y & ² VB— ¥65 Þ\$ì u Î"w2'4 U• T 8 K #U Ò 7 Ê(Ü ² %65 é 2 s VB— ¥ u*a Î"w #+° 5 t j S U•C Kg Ê+ö 3Ò560 U•*a"m j S Ê+ö f 1.78 mA /V 6E -@/¢ < ÈNÂ MO, @í ² r*TC Kg j S " T# z#U(Û⁻ 7 À*T+° =x S U• f VB— ¥P EK Î"w :P M½ EF M² +°Kò <C Kg j S ü Ç ², .ù 5 t ¬ [w á Ÿ JZ@ù VB— ¥ Î"wUŽP EK -=ñUŽC Kg j S " Užz#U j S ¬ [

Y * 21§ # TN362 ³(Z 3 -- A doi 10.118057KYDA 2022096

Low temperature performance of transimpedance amplifier and its application in amplification of terahertz photoelectric signal

LI Hongyi^{1,2} TAN Zhi yong^{1,2*} SHAO Dixiang¹ FU Zhanglong¹ CAO Juncheng^{1,2*} (1.Laboratory of Terahertz Solid- state Technology Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 China 2.Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China)

Abstract With the development of terahertz technology, low temperature electronics and radio astronomy, the demand for integrated transimpedance amplifier chips working in low temperature environment increases. The electrical performance of a Ge Si based transimpedance amplifier in deep low temperature environment is studied. The current voltage curves of the typical ports and gain curve of the amplifier chip at 8 K, and a relatively flat gain effect in the 0.1 GHz 3 GHz band are obtained. In order to verify its amplification function of terahertz photoelectric signal, GN1068 is integrated with terahertz Quantum Well Photodetector(QWP), and a terahertz pulse laser detection system is built. A terahertz photoelectric signal, with a pulse width of 2 s, is successfully amplified at 8 K. The transimpedance gain is about 560 . The current amplification gain is 1.78 mA/V. The above results verify the feasibility of commercial transimpedance amplifier in deep low temperature environment for the first time, and provide an effective technical means for integrated transimpedance amplifier in the field of terahertz high-speed detection and high frequency communication.

Keywords terahertz detectingUž high speed packagingUž transimpedance amplifierUž cryogenic amplification technique

		(THz) THz)			0.1~1	0 THz 3	mm~30	m		
								[1]			
b/k	Κ	U•2022-04-2	25	Κ	U•2022-05-17			-			
&Fý	M¥,	U•			(2018YFB	180150 2		(6192	7813 6177522	9 62004209	21DZ1101103
EF	[^] 51	U•	emaitz	zytan	@mailsim.accn		emailjccao@mailsim.ac	con			

1	z D u0u	uU•CKgjS	5 " z#U S6) (ö¢%	THz u*a	u #+°jSÀ	*T	17
	THz			THz			[2]	THz
(Supercon Barrier Diode	ducting HeEl SBD) ^[6]	l THZ ectron Bolom THZ	eter SHEB) ^[3] (QWP) ^[7]		4 40	(BIB) ^[4-5]	[-]	(Schottky
		THz QWP	Liu ^[7] 20 ^[8-14]	004 T	1~10 THz Hz QWP		[15]	
Emitting Diode	LED) [16	^{ij} THz	THz Q\	WP		THz	QWP	(Light LED
THz QW	ſΡ		ΙΠΖ			LED THz QWP		
THz	Patrashin ¹ THz QWP	[17]		4	THz QWP	4 K		
(Bipol (Complementary ^[18]	ar JunctionTr ⁄ Metal Oxide	(Junction ansistor BJT) Semiconduct	FieldEffect Tra	ansisto	r JFET)		100 K	
					TH-7			40 K
		100 MHz ^{[2} Ge-	^{ອງ} Si		1112	(GN1068)	ті	Hz QWP
THz QWP			QWP	THz	z THz QV	WP	100 QWI) GHz
1	THz	THz QW	/P					THz QWP GN1068
8 K GN1068		TH	Iz QWP THz QWP				THz Gî	N1068
1 7Û's -=ñ								
900 m	GN1068 2 6.75 k 1 GN THz QV	Ge-S 250 m - 3 dB 11068 WP 80	i 12 GHz(16 G 0 m×800 m	210 m)))			
mm	[22]	TH	z QWP GN1	068				

THz QWP

18			VB—	¥.ý ' :*a	→ ' Ñ				21
	THz			[11]	THz QV	VP	РСВ	THz OWP	GN1068
		0	T	Hz QWP		00		1	
		2 (P	rinted Circuit E	Board PCB	PCB	68	Fig. 2 Pac	heat sink (Cu)	ram of THz QWP and
PCB	(Heat s	sink) 24350B					2 TH	IZ QWP GN	11068
100	THz QWF	D D D D D D D D D D D D D D D D D D D	GN1068		PCB				
			PCB	0.8 r	nm	SM	A		PCB
						50			
		THz QWP			F	РСВ			
		GN106	8						
2 Ê0,	=ñ4š								
	THz QWP		10 K	GN10	68			TH	Iz QWP
	01400	GN106	8						
(Samala	GN106	8 THZ QWP	' PCB	2					
(Sample	noid à i		3						
GN1	068			4		(RFh)	1		
(OUT N	OUT P)								-
(I U)									
	sar	nple holder (Cu)	de la comparación de la comp de la comparación de la comparación		RF−in ───┨ ┣-	U-set		OUT-N UUT-P	
	Fig. 3 P G 3 GN	hoto of the integr N1068installed o I1068	rated chip of THz (n a copper sample THz Q	QWP and holder WP	Fig. 4 Sche meas 4	matic of th surement of G I GN1068	r − le electri 1068	cal charact	eristic
	THz	ГНz				GN1068	THz G	2WP	THz
	-	ГНz	(THz Qu	lantum		_			
Cascade	E Laser QC	_)			cryostat -	→	OAP		
	(Off Ax	is Parabolic	OAP)					am.e -4-4	
				5					
OAF	P THz Q	CL		• •	high	nower	1	THZ T	oscinoscope
IHZ QW		OAP	10 TH-[22]	90,	pulse g	enerator	Q		
1		۲/۷//LI→1/2	4.3 I HZ ^[22]			I			SR570
		////	0 N 0 1 V	TH-		l OA	P G	N1068	
QCI	0.1 A	V V	[2:3]	1112	Fig. 5 Option	schematic of	vorificatio	n evetor for	amplifying detection
4	.3 TH7		100 m×2	2 mm	signal o	f THz QWP u	nder low t	emperature	
	56	К	2.0 /	4	5	THz QWP			

THz

î5/ ³(Z U∙

- [1] SIEGEL P.H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.
- [2] , [M]. : , 2020.36-40. (TAN Zhiyong CAO Juncheng. Terahertz photoelectric measurement technology[M]. Shanghai:East China University of Science and Technology Press, 2020.36-40.)
- [3] JIANG Y, JIN B B, XU W W, et al. Terahertz detectors based on superconducting hot electron bolometers[J]. Science China Information Sciences, 2012, 55(1):64-71.
- [4] BEEMAN J W, GOYAL S, REICHERTZ L A, et al. Ion implanted Ge: B far infrared blocked impurity band detectors[J]. Infrared Physics and Technology, 2007, 51(1):60-65.
- [5] , , , , GaAs BIB
 [J]. , 2018, 16(3): 383-387. (SHANG Jingcheng, WANG Xiaodong, WANG Bingbing, et al. Background current testing and analysis of a novel mesa type GaAs based BIB detector[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(3): 383-387.)
- [6] GHOBADI A, KHAN T M, Celik O O, et al. A performance enhanced planar Schottky diode for terahertz applications: an electromagnetic modeling approach[J]. International Journal of Microwave and Wireless Technologies, 2017,9(10):1905-1913.
- [7] LIU H C, LUO H, SONG C Y, et al. Terahertz quantum well photodetector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004,84(20):4068-4070.
- [8] LUO H,LIU H C,SONG C Y, et al. Background limited terahertz quantum well photodetector[J]. Applied Physics Letters, 2005, 86(23):231103.
- [9] GUO X G, TAN Z Y, CAO J C, et al. Many body effects on terahertz quantum well detectors[J]. Applied Physics Letters, 2009, 94 (20):201101.
- [10] FRANKE C, WALTHER M, HELM M, et al. Two photon quantum well infrared photodetectors below 6 THz[J]. Infrared Physics & Technology, 2015(70): 30- 33.
- [11] ZHANG R, SHAO D X, FU Z L, et al. Terahertz quantum well photodetectors with metal grating couplers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017,23(4):3800407.
- [12] GRANT P D, LAFRAMBOISE S R, DUDEK R, et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009,45(18):952-954.

21

z D u0u U•C Kg j S " z#U S6) ö ¢ % THz u*a #+° j S À*T 1 [13] TAN Z Y, ZHOU T, CAO J C, et al. Terahertz imaging with quantum cascade laser and quantum well photodetector[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1344-1346.

- [14] TAN Z Y, WAN W J, CAO J C, et al. Research progress in terahertz quantum cascade lasers and quantum well photodetectors[J]. Chinese Physics B, 2020, 29(8):084212.
- [15] SCHNEIDER H,LIU H C. Quantum well infrared photodetectors[M]. Berlin:Springer Verlag, 2006;75-81.
- [16] FUZL, GULL, GUOXG, et al. Frequency up Onversion photon Type terahertz imager[J], Scientific Reports, 2016(6):25383.
- [17] PATRASHIN M, HOSAKO I. Terahertz frontside illuminated quantum well photodetector[J]. Optics Letters, 2008, 33(2): 168-170.
- [18] [J]. , 2015, 45(6): 789- 795. (XIE Bingqing, BI , . Jinshun, LI Bo, et al. The effect of cryogenic temperature characteristics on silicon-based devices and circuits[J]. Microelectronics, 2015, 45(6): 789-795.)

, , SiGe/SiHBT [19] [J]. , 2000(12): 1208-1213. (XU Chen, SHEN Guangdi, CHEN Jianxin, et al. Parasitic barrier in emitter Base junction and its effects on performance of SiGe/Si HBT at both room temperature and low temperature[J]. Chinese Journal of Semiconductors, 2000(12): 1208-1213.)

[20] , 2004, 48(5): 672- 676. (LIU Jun, ZHOU Mingzhu, [J]. , LI Zhiyun, et al. Research status of deep cryogenic temperature millimeter wave low noise amplifier[J]. Microelectronics, 2004, 48(5):672-676.)

- [22] ZHANG Z Z, FU Z L, GUO X G, et al. 4.3 THz quantum well photodetectors with high detection sensitivity[J], Chinese Physics B, 2018,27(3):030701.
- [23] TAN Z Y, WANG H Y, WAN W J, et al. Dual beam terahertz quantum cascade laser with >1 W effective output power[J]. Electronics Letters, 2020, 56(22): 1204-1206.

^510¬ ÷

z D u (1996)

.emaithyli@mail.sim.

ac.cn.

% öA (1967)

0R LTÅ(1987)

AY ¦ ó (1982)

Eá .' (1990)

^[21] GRANT P D, DUDEK R, BUCHANAN M, et al. Room temperature heterodyne detection up to 110 GHz with a quantum-well infrared photodetector[J]. IEEE Photonics Technology Letters, 2006, 18(21): 2218-2220.